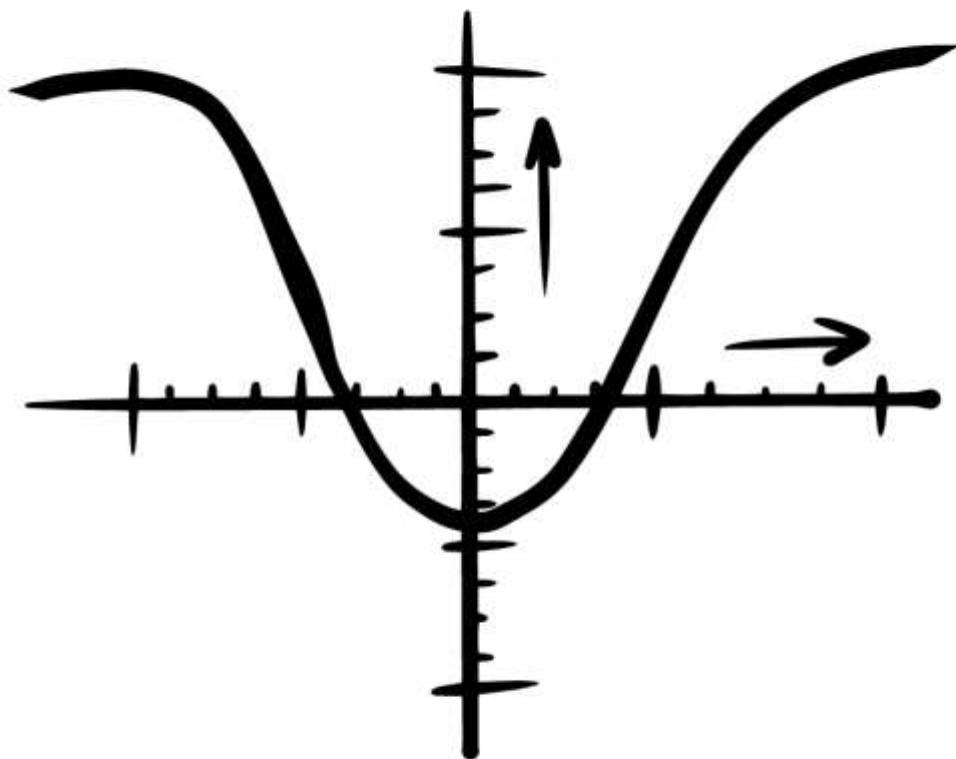


Functions

$f(x)$



WWW.TYCHR.COM

FUNCTIONS

By the end of the chapter you should be familiar with:

- Function
- Domain
- Range
- Linear and Piecewise Functions
- Graph of Functions
- Composite Functions
- Inverse Functions
- One-to-one Function
- Identity Function
- Transformations

FUNCTIONS

A **function** is a relation from a set of inputs to a set of possible outputs where each input is related to exactly one output.

This means that if the object x is in the set of inputs (called the **domain**) then a function f will map the object x to exactly one object $f(x)$ in the set of possible outputs (called the **codomain**).

The notion of a function is easily understood using the metaphor of a **function machine** that takes in an object for its input and, based on that input, spits out another object as its output.

A function is more formally defined given a set of inputs X (**domain**) and a set of possible outputs Y (**codomain**) as a set of ordered pairs (x,y) where $x \in X$ and $y \in Y$, subject to the restriction that there can be only one ordered pair with the same value of x . We can write the statement that f is a function from X to Y using the **function notation** $f : X \rightarrow Y$

DOMAIN

The **domain** of a function is the complete set of possible values of the independent variable.

How to find the domain?

In general, we determine the **domain** of each function by looking for those values of the independent variable (usually x) which we are **allowed** to use. (Usually we have to avoid 0 on the bottom of a fraction, or negative values under the square root sign).

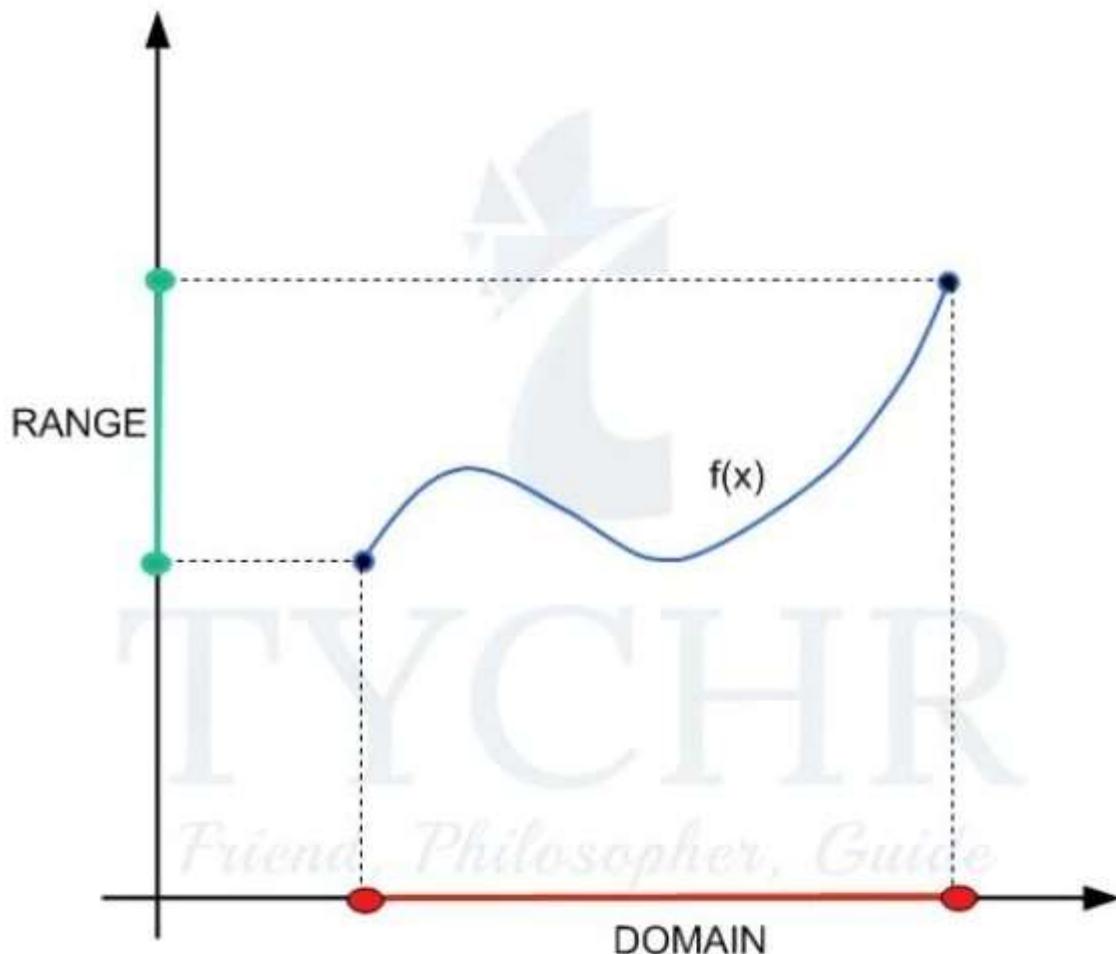
RANGE

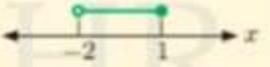
The **range** of a function is the complete set of all possible **resulting values** of the dependent variable, after we have substituted the domain.

How to find the range?

- The **range** of a function is the spread of possible y -values (minimum y -value to maximum y -value)
- Substitute different x -values into the expression for y to see what is happening.
- Make sure you look for **minimum** and **maximum** values of y .
- Draw the graph.

Friend, Philosopher, Guide



Set notation	Bracket notation	Number line graph	Meaning
$\{x \mid x \geq 3\}$	$x \in [3, \infty[$		the set of all x such that x is greater than or equal to 3
$\{x \mid x < 2\}$	$x \in]-\infty, 2[$		the set of all x such that x is less than 2
$\{x \mid -2 < x \leq 1\}$	$x \in]-2, 1]$		the set of all x such that x is between -2 and 1, including 1
$\{x \mid x \leq 0 \text{ or } x > 4\}$	$x \in]-\infty, 0] \text{ or }]4, \infty[$		the set of all x such that x is less than or equal to 0, or greater than 4

Example: Find the domain and range of the function $f(x) = (\sqrt{x+2})/(x^2+9)$

Solution: In the numerator (top) of this fraction, we have a square root. To make sure the values under the square root are non-negative, we can only choose x -values greater than or equal to -2 . The denominator (bottom) has $x^2 - 9$, which we recognise we can write as $(x+3)(x-3)$. So, our values for x cannot include -3 or 3 . We don't need to worry about -3 anyway, because we decided in the first step that $x \geq -2$.

So the **domain** for this case is $x \geq -2, x \neq 3$, which we can write as $[-2, 3) \cup (3, \infty)$.

To work out the range, we consider top and bottom of the fraction separately.

For the numerator, If $x = -2$, the top has $\sqrt{(-2+2)} = 0$. As, x increases value from -2 , the top will also increase (out to infinity in both cases).

For the denominator, we break this up into four portions:

When $x = -2$, the bottom is $(-2)^2 - 9 = 4 - 9 = -5$. We have $f(-2) = 0 / -5 = 0$

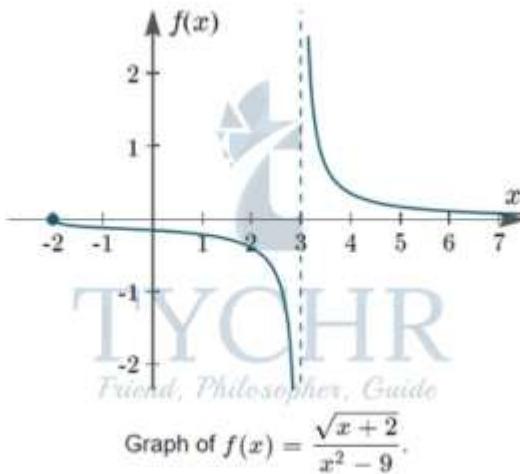
Between $x = -2$ and $x = 3$, $(x^2 - 9)$ gets closer to 0, so $f(x)$ will go to $-\infty$ as it gets near $x = 3$.

For $x > 3$, when x is just bigger than 3, the value of the bottom is just over 0, so $f(x)$ will be a very large positive number.

For very large x , the top is large, but the bottom will be much larger, so overall, the function value will be very small.

So, we can conclude the **range** is $(-\infty, 0] \cup (0, \infty)$.

We can see in the following graph that indeed, the domain is $[-2, 3) \cup (3, \infty)$ and the range is all values of $f(x)$ except $f(x) = 0$.



LINEAR AND PIECEWISE FUNCTIONS

Linear Function: A linear function $f(x) = mx+c$ where m and c are constants, represents a context with a constant rate of change. The constants in the equation are called parameters where **m** is the **gradient** and **c** is the **y-intercept**.

The **gradient** is given by = ***Change in y/Change in x*** = $(y_2 - y_1)/(x_2 - x_1)$ and **point gradient form** is $y - y_1 = m(x - x_1)$
Standard or general form is $ax + by + d = 0$ where a, b and d are constants.

Example: Find the equation of straight line passing through the points $(1,4)$ and $(-3,10)$. Give your answer in the form $ax+by+d=0$, where a,b,d .

Solution: We can find the gradient m by $m = (y_2 - y_1)/(x_2 - x_1) = (4 - 10)/(1 - (-3)) = -3/2$

Then find the equation using the point-gradient form, Substituting m and $(1,4)$ gives:

$$y - 4 = (-3/2)(x - 1)$$

$$3x - 2y + 5 = 0$$

Piecewise functions: A piecewise function is a function where more than one formula is used to define the output. Each formula has its own domain, and the domain of the function is the union of all of

$$f(x) = \begin{cases} \text{formula 1 if } x \text{ is in domain 1} \\ \text{formula 2 if } x \text{ is in domain 2} \\ \text{formula 3 if } x \text{ is in domain 3} \end{cases}$$

these smaller domains.

For

$$f(x) = \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{if } x < 0 \end{cases}$$

example, the absolute value function is $f(x) =$

Example 2: Evaluate $f(x)$ when $x = -3$, $x = 2$ and $x = 4$. Then graph the function.

$$f(x) = \begin{cases} x + 1 & \text{if } x < 2 \\ -2x + 7 & \text{if } x \leq 2 \end{cases}$$

Solution: Evaluating a piecewise function adds an extra step to the whole proceedings. We have to decide which piece of the function to plug-and-chug into. Since -3 is less than 2 , we use the first function to evaluate $x = -3$.

$$f(x) = x + 1$$

$$f(-3) = -3 + 1 = -2$$

The number 2 is our boundary between life, death, and the two pieces of our function. Tie-breakers go to the second function, though.

$$f(x) = -2x + 7$$

$$f(2) = -2(2) + 7 = 3$$

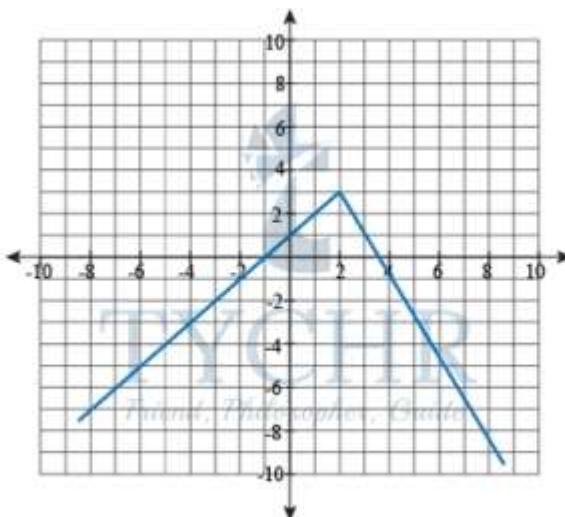
The second function continues to be used, from 2 onward to infinity—and beyond, according to some space-faring toys.

$$f(x) = -2x + 7$$

$$f(4) = -2(4) + 7 = -1$$

Now, to graph the function.

To the left of $x = 2$, $f(x) = x + 1$. The graph will go right up to, but not touch, $f(2) = 2 + 1 = 3$. Then $f(x) = -2x + 7$ to the right of and including $x = 2$.



GRAPHS OF FUNCTIONS

The graph of a function f is the set of all points in the plane of the form $(x, f(x))$. We could also define the graph of f to be the graph of the equation $y = f(x)$. So, the graph of a function is a special case of the graph of an equation.

To find the graph of a function we must follow these steps,

Lets take an **example** with $f(x) = 3x+2$ Make a two-column table. Label the columns x and $f(x)$. Choose several values for x and put them as separate rows in the x column.

Tip: It is always good to include 0, positive values, and negative values, if possible.

Let's pick the values of x as $-2, -1, 0, 1$ and 3 and calculate $f(x)$ by substituting them, after substitution we get the following table –

X	F(x)
-2	-4
-1	-1
0	2
1	5
3	11

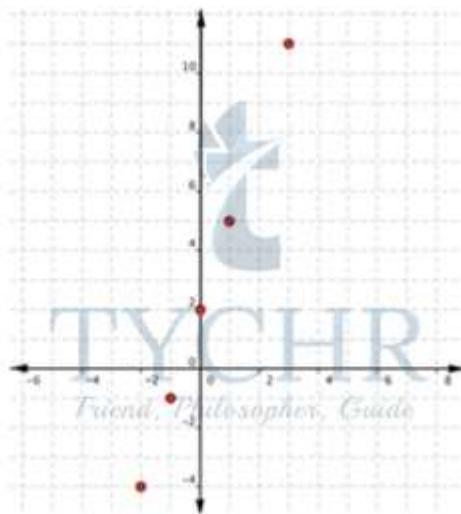
Now that you have a table of values, you can use them to help you draw both the shape and location of the function. Important: The graph of the function will show all possible values of x and the corresponding values of y. This is why the graph is a line and not just the dots that make up the points in our table.

Now graph $f(x) = 3x+2$

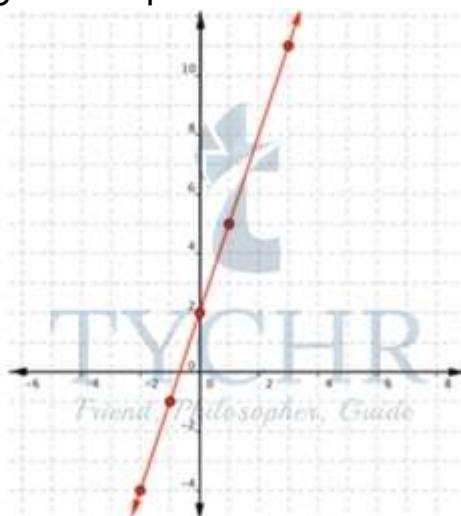
Using the table of values we created above, you can think of $f(x)$ as y. Each row forms an ordered pair that you can plot on a

Friend, Philosopher, Guide

coordinate grid.



Since the points lie on a line, use a straight edge to draw the line. Try to go through each point without moving the straight edge.



Here are the graphs of some common functions-

COMPOSITE FUNCTIONS

Function Composition is applying one function to the results of another.

Let's take an

Example- Given $f(x) = x^2 + 6$ and $g(x) = 2x - 1$, find a) $(f \circ g)(x)$
b) $(g \circ f)(x)$

Solution: a) $(f \circ g)(x)$

$$\begin{aligned} &= f(2x - 1) \\ &= (2x - 1)^2 + 6 \\ &= 4x^2 - 4x + 1 + 6 \\ &= 4x^2 - 4x + 7 \end{aligned}$$

b) $(g \circ f)(x)$

$$\begin{aligned} &= g(x^2 + 6) \\ &= 2(x^2 + 6) - 1 \\ &= 2x^2 + 12 - 1 \\ &= 2x^2 + 11 \end{aligned}$$

Domain of a composite function

1. Find the domain of g .
2. Find the domain of f .
3. Find those inputs, x , in the domain of g for which $g(x)$ is in the domain of f . That is, exclude those inputs, x , from the domain of g for which $g(x)$ is not in the domain of f . The resulting set is the domain of $f \circ g$ (f of g)

Example: Find the domain of $(f \circ g)(x)$ where $f(x) = 5/(x-1)$ and $g(x) = 4/(3x-2)$

Solution: The domain of $g(x)$ consists of all real numbers except $x = 2/3$, since that input value would cause us to divide by 0. Likewise, the domain of f consists of all real numbers except $x = 1$.

So, we need to exclude that value of x from $g(x)$ for which $g(x) = 1$.

$$4/(3x-2) = 1 \quad \text{Set } g(x) \text{ equal to 1}$$

$$4 = 3x-2 \quad \text{Multiply by } 3x-2$$

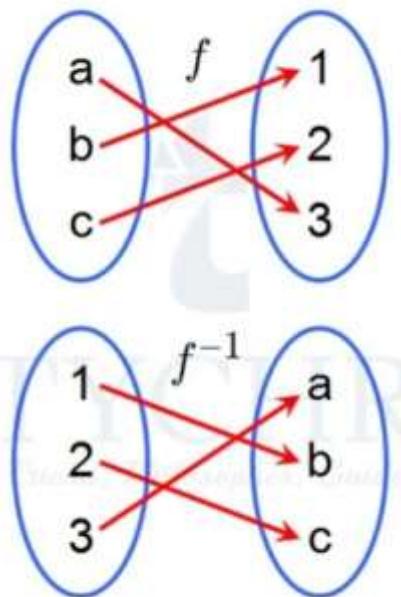
$$6=3x, x=2 \quad \text{Add 2 on both sides and then divide by 3}$$

So, the domain of $f \circ g$ is the set of all real numbers except $2/3$ and 2. Which can be written as $(-\infty, 2/3) \cup (2/3, 2) \cup (2, \infty)$

INVERSE FUNCTIONS

An **inverse function** or an anti-function is defined as a function, which can reverse into another function. In simple words, if any function "f" takes x to y then, the inverse of "f" i.e. " f^{-1} " will take y to x.

Inverse function graph



The graph of the inverse of a function reflects two things, one the function and second the inverse of the function, over the line $y = x$. This line in the graph passes through the origin and has slope value 1. It can be represented as;

$$y = f^{-1}(x)$$

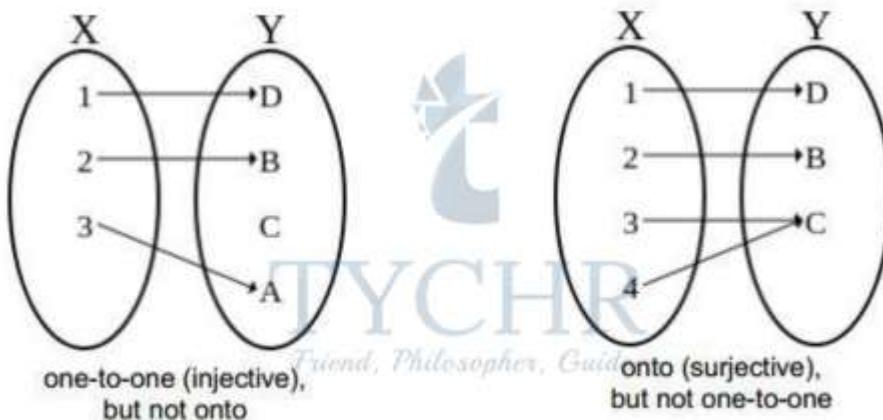
which is equal to; $x = f(y)$

This relation is somewhat similar to $y = f(x)$, which defines the graph of f but the part of x and y are reversed here. So, if we have to draw the graph of f^{-1} then we have to switch the position of x and y in axes.

How do we know that an inverse of a function exists?

The original function has to be a **one-to-one function** to assure that its inverse will be also a function. A function is said to be a **one-to-one function** only if every second element corresponds to the first

value (values of x and y are used only once).



You can apply on the horizontal line test to verify whether a function is a one-to-one function. If a horizontal line intersects the original function in a single region, the function is a one-to-one function and inverse is also a function.

How To Find The Inverse Of A Function?

Generally, the method of calculating an inverse is swapping of coordinates x and y. This newly created inverse is a relation but not necessarily a function.

Example: Find the inverse of the function $f(x) = \ln(x - 2)$

Solution: First, replace $f(x)$ with y So, $y = \ln(x - 2)$

Replace the equation in exponential way, $x - 2 = e^y$

Now, solving for x ,

$$x = 2 + e^y$$

Now, replace x with y and thus, $f^{-1}(x) = y = 2 + e^x$

IDENTITY FUNCTIONS

The **identity function** is a function which returns the same value, which was used as its argument. It is also called an **identity relation** or **identity map** or **identity transformation**. If f is a function,

then identity relation for argument x is represented as $f(x) = x$, for all values of x . In terms of relations and functions, this function $f: P \rightarrow P$ defined by $b = f(a) = a$ for each $a \in P$, where P is the set of real numbers. Both the domain and range of function here is P and the graph plotted will show a straight line passing through the origin.

Example: Prove $f(2x) = 2x$ is an identity function.

Solution: Given, $f(2x) = 2x$

Let us put the values of x in the given function.

If $x = 1$, then;

$$f(2(1)) = 2(1) \rightarrow f(2) = 2$$

If $x = 2$, then;

$$f(2(2)) = 2(2) \rightarrow f(4) = 4$$

If $x = 3$, then;

$$f(2(3)) = 2(3) \rightarrow f(6) = 6$$

If $x = 0$, then;

$$f(2(0)) = 2(0) \rightarrow f(0) = 0$$

Let us try with some negative values of x .

If $x = -1$, then;

$$f(2(-1)) = 2(-1) \rightarrow f(-2) = -2$$

If $x = -2$, then;

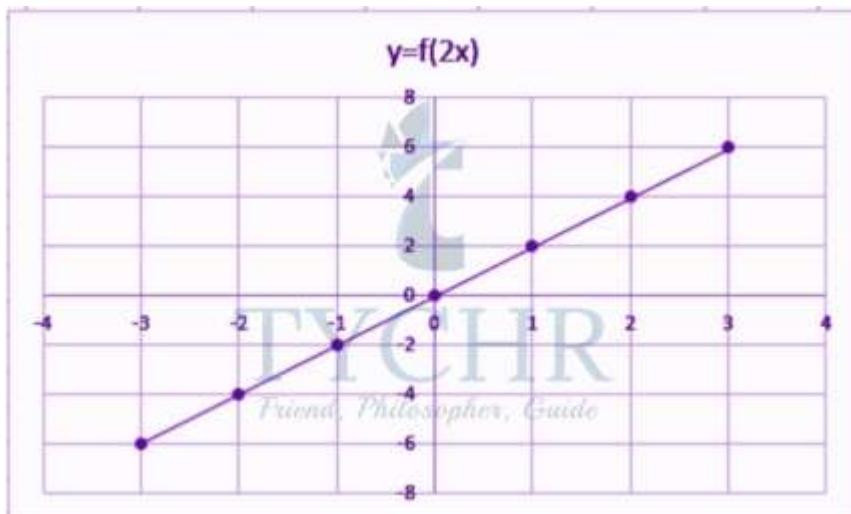
$$f(2(-2)) = 2(-2) \rightarrow f(-4) = -4$$

If $x = -3$, then;

$$f(2(-3)) = 2(-3) \rightarrow f(-6) = -6$$

By putting them in a table and graphing them,

X	-3	-2	-1	0	1	2	3
$Y = F(X)$	-6	-4	-2	0	2	4	6



You can see from the above graph. The function $f(2x) = 2x$ plots a straight line, hence it is an identity function.

TRANSFORMATION OF GRAPHS

Transformations after the original function

Suppose you know what the graph of a function $f(x)$ looks like. Suppose $d \in \mathbb{R}$ is some number that is greater than 0, and you are asked to graph the function $f(x) + d$. The graph of the new function is easy to describe: just take every point in the graph of $f(x)$, and move it up a distance of d . That is, if (a, b) is a point in the graph of $f(x)$, then $(a, b + d)$ is a point in the graph of $f(x) + d$. As an explanation for what's written above: If (a, b) is a point in the graph of $f(x)$, then that means $f(a) = b$. Hence, $f(a) + d = b + d$, which is to say that $(a, b + d)$ is a point in the graph of $f(x) + d$.

New function	How points in graph of $f(x)$ become points of new graph	visual effect
$f(x + d)$	$(a, b) \mapsto (a + d, b)$	shift left by d
$f(x - d)$	$(a, b) \mapsto (a - d, b)$	shift right by d
$f(cx)$	$(a, b) \mapsto (\frac{1}{c}a, b)$	shrink horizontally by $\frac{1}{c}$
$f(\frac{1}{c}x)$	$(a, b) \mapsto (ca, b)$	stretch horizontally by c
$f(-x)$	$(a, b) \mapsto (-a, b)$	flip over the y -axis

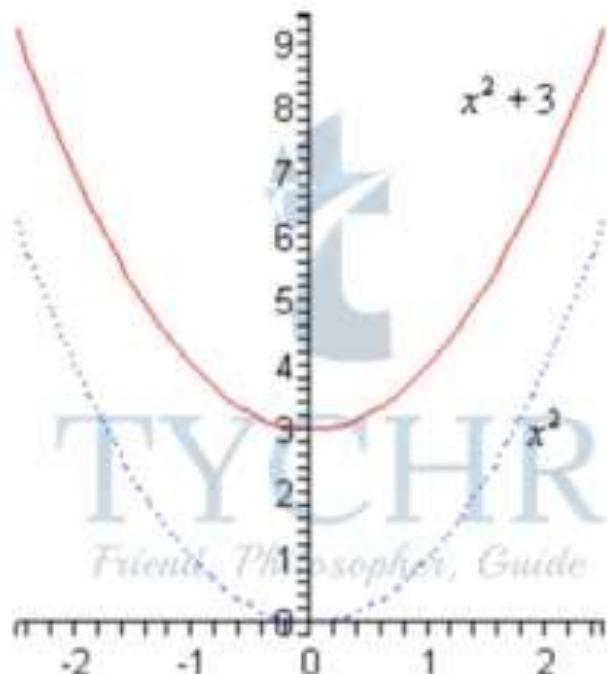
Transformations before the original function

We could also make simple algebraic adjustments to $f(x)$ before the function f gets a chance to do its job. For example, $f(x+d)$ is the function where you first add d to a number x , and only after that do you feed a number into the function f .

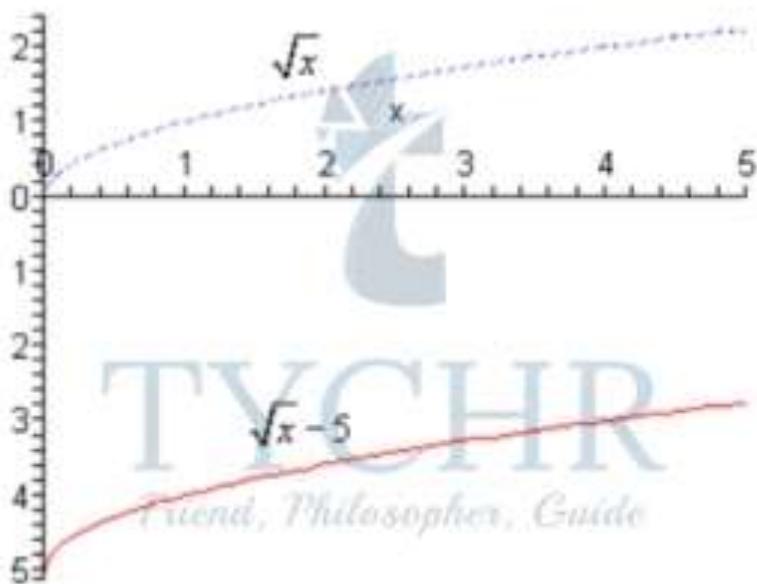
New function	How points in graph of $f(x)$ become points of new graph	visual effect
$f(x) + d$	$(a, b) \mapsto (a, b + d)$	shift up by d
$f(x) - d$	$(a, b) \mapsto (a, b - d)$	shift down by d
$cf(x)$	$(a, b) \mapsto (a, cb)$	stretch vertically by c
$\frac{1}{c}f(x)$	$(a, b) \mapsto (a, \frac{1}{c}b)$	shrink vertically by $\frac{1}{c}$
$-f(x)$	$(a, b) \mapsto (a, -b)$	flip over the x -axis

Example:

- $g(x) = x^2 + 3$



- $f(x) = \sqrt{x-5}$



TYCHR

Friend, Philosopher, Guide

WWW.TYCHR.COM

+91 9540653900