
 

 

 



 

 

By the end of this chapter you should be familiar with: 
• Contingency tables 

• Observed frequencies and expected frequencies 

• Null hypothesis and alternative hypothesis 

• Significance level 

• Degrees of freedom 

• Probability values 

• χ2 test for independence and goodness of fit 

• t-test 

• Spearman’s rank correlation 

 
SPEARMAN’S RANK CORRELATION 
COEFFICIENT 
Contingency tables (also called crosstabs or two-way tables) are used in 
statistics to summarize the relationship between several categorical 
variables. A contingency table is a special type of frequency distribution 
table, where two variables are shown simultaneously. 
 
The Spearman’s Rank Correlation Coefficient is used to discover the strength 
of a link between two sets of data. The notation used is rs. 
Spearman’s correlation coefficient shows the extent to which one variable 
increases or decreases as the other variable increases. Such behaviour is 
described as ‘monotonic’. 
A value of 1 means the set of data is strictly increasing, a value of -1 means 
the set of data is strictly decreasing and a value of 0 means no monotonic 

behaviour. 
Spearman’s rank correlation coefficient is calculated from a sample of N 
data pairs (X, Y) by first creating a variable U as the ranks of X and a 
variable V as the ranks of Y (ties replaced with average ranks). Spearman’s 
correlation is then calculated from U and V using: 
 

 
 



 

 

Example: Find the Spearman’s rank correlation coefficient for the following 
data: 
 

Height 65 66 67 67 68 69 70 72 

Weight 67 68 65 68 72 72 69 71 

 

Solution: Make a table:

 
 

Where d = H – W 

CF1 = 2(4 − 1)/12 = (2 × 3)/12 = 0.5 CF2 = (2 × 3)/12 = 0.5 
C.F = ∑d2+ CF1 + CF2 = 26 + 0.5 + 0.5 = 27 
 rs = 1 – (6 × 27)/ (8×6) = 0.679 

 
HYPOTHESIS TESTING 
A statistical hypothesis is an assumption about a population parameter. This 
assumption may or may not be true. Hypothesis testing refers to the formal 
procedures used by statisticians to accept or reject statistical hypotheses. 
There are two types: 

• Null hypothesis. The null hypothesis, denoted by Ho, is usually the 
hypothesis that sample observations result purely from chance. 

• Alternative hypothesis. The alternative hypothesis, denoted by 
H1 or Ha, is the hypothesis that sample observations are influenced by 
some non-random cause. 



 

 

Statisticians follow a formal process to determine whether to reject a null 

hypothesis, based on sample data. This process, called hypothesis testing, 
consists of four steps. 
 

• State the hypotheses. This involves stating the null and alternative 
hypotheses. The hypotheses are stated in such a way that they are 
mutually exclusive. That is, if one is true, the other must be false. 

• Formulate an analysis plan. The analysis plan describes how to use 
sample data to evaluate the null hypothesis. The evaluation often 
focuses around a single test statistic. 

• Analyse sample data. Find the value of the test statistic (mean score, 
proportion, t statistic, z-score, etc.) described in the analysis plan. 

• Interpret results. Apply the decision rule described in the analysis 
plan. If the value of the test statistic is unlikely, based on the null 
hypothesis, reject the null hypothesis. 

 
A test of a statistical hypothesis, where the region of rejection is on only 
one side of the sampling distribution, is called a one-tailed test and a test of 
a statistical hypothesis, where the region of rejection is on both sides of the 
sampling distribution, is called a two-tailed test. 

 

 

 

 



 

 

TEST FOR A BINOMIAL PROBABILITY 

To hypothesis test with the binomial distribution, we must calculate the 
probability, p, of the observed event and any more extreme event 
happening. We compare this to the level of significance α. If p > α then we 
do not reject the null hypothesis. If p < α we accept the alternative hypothesis. 
 

Example: A coin is tossed twenty times, landing on heads six times. Perform 
a hypothesis test at a 5% significance level to see if the coin is biased. 
 

Solution: First, we need to write down the null and alternative hypotheses. In 
this case 
H0: The coin is not biased. 
H1: The coin is biased in favour of tails. 
The important thing to note here is that we only need a one-tailed test as 
the alternative hypothesis says “in favour of tails”. A two-tailed test would 
be the result of an alternative hypothesis saying “The coin is biased”. 

P[X ≤ 6] = 0.058 
P[X ≤ 5] = 0.021 

We would have had to reject the null hypothesis and accept the alternative 
hypothesis. So the point at which we switch from accepting the null 
hypothesis to rejecting it is when we obtain 5 heads. This means that 5 is 
the critical value. 

TEST FOR A POISSON DISTRIBUTION 

Testing hypotheses with the Poisson distribution is very similar to testing 
them with the binomial distribution. If the probability is greater than α, the 
level of significance, then the null hypothesis is accepted. If it is less than α, 
we accepted the alternative hypothesis. 
 

Example: An existing make of car is known to break down on average one 
and a half times per year. A new model is introduced and the 
manufacturer claims that this model is less likely to break down. Ten 
randomly selected cars break down a total of eight times within the first 
year. Test the manufacturer’s claim at a 5% significance level. 



 

 

Solution: Let X be the number of break downs of the new model of car in a 
year. Since we have an average rate and the data is discrete, we need to 
use a Poisson distribution. So X ∼ Poisson(λ) with λ=1.5. The null and 
alternative hypotheses will be 
H0 : H1 : λ = 1.5, λ < 1.5 
 
We need to decide whether P[X ≤ 8] < α, where α=0.05 is the significance 
level. Firstly, the expected number of breakdowns λt = 1.5×10 = 15. 
We use the cumulative tables with λt = 15 and x=8 to see P[X ≤ 8] = 0.0374 
P[X ≤ 8] = 0.0374 < 0.05 = α 
So we accept the alternative hypothesis. The average rate of breakdowns 
has decreased. 

TEST FOR A NORMAL DISTRIBUTION 

When constructing a confidence interval with the standard normal 

distribution, these are the most important values that will be needed. 
 

Significance Level 10% 5% 1% 

z1 – α 1.28 1.645 2.33 

z1 – α/2 1.645  1.96 2.58 

 
These values are obtained from the inverse of the cumulative distribution 

function of the standard normal distribution. i.e. we need to consider ∅-1x. For 
example, when we look for the probability, say, that z < 2.33, we get P[z < 
2.33] = 0.99. Now if we have a 1% significance level, we need a 99% 
confidence interval so we need z distribution of sample means where μ is 
the true mean and μ0 is the current accepted population mean. Draw 
samples of size n from the population. When n is large 
enough and the null hypothesis is true the sample means often follow a 
normal distribution with mean μ0 and standard deviation 𝜎/√𝑛 . This is 
called the distribution of sample means and can be denoted by 𝑥̅  ∼ 
N(μ0, 𝜎/√𝑛). This follows from the central limit theorem. 
 
The z-score will this time be obtained with the formula 



 

 

z = 𝑥̅ − 𝜇0/𝜎/√𝑛 
So if μ = 𝜇0, X ∼ N(𝜇0, 𝜎/√𝑛) and z ∼ N(0, 1) 
The alternative hypothesis will then take one of the following forms: 
depending on what we are testing. 

Example: An automobile company is looking for fuel additives that might 
increase gas mileage. Without additives, their cars are known to average 
25 mpg (miles per gallons) with a standard deviation of 2.4 mpg on a road 
trip from London to Edinburgh. The company now asks whether a particular 
new additive increases this value. In a study, thirty cars are sent on a road 
trip from London to Edinburgh. Suppose it turns out that the thirty cars 
averaged 𝑥̅  = 25.5 mpg with the additive. Can we conclude from this result 
that the additive is effective? 
 

Solution: We are asked to show if the new additive increases the mean 
miles per gallon. The current mean μ=25 so the null hypothesis will be that 
nothing changes. The alternative hypothesis will be that μ>25 because this 
is what we have been asked to test. 
H0: μ = 25 H1: μ > 25 
Now we need to calculate the test statistic. We start with the assumption 
the normal distribution is still valid. This is because the null hypothesis 
states there is no change in μ. Thus, as the value σ=2.4 mpg is known, we 
perform a hypothesis test with the standard normal distribution. So the test 
statistic will be a z score. We compute the z score using the formula 

z = (𝑥̅ − 𝜇0)/𝜎/√𝑛 = (25.5−25)/2.4/√30 
We are using a 5% significance level and a (right-sided) one-tailed test, 
so α=0.05 so from the tables we obtain z1- α= 1.645 is our test statistic. 
As 1.14 < 1.645, the test statistic is not in the critical region so we cannot 
reject H0. Thus, the observed sample mean 𝑥̅  is consistent with the 
hypothesis H0: μ = 25 on a 5% significance level. 

 
THE T-TEST 
The t-test is a statistical test which is widely used to compare the mean of 
two groups of samples. It is therefore to evaluate whether the means of the 
two sets of data are statistically significantly different from each other. 
There are many types of t test: 



 

 

1. The one-sample t-test, used to compare the mean of a population 
with a theoretical value. 

2. The unpaired two sample t-test, used to compare the mean of 
two independent samples. 

3. The paired t-test, used to compare the means between two related 
groups of samples. 

 
ONE SAMPLE T-TEST 
As mentioned above, one-sample t-test is used to compare the mean of a 
population to a specified theoretical mean (μ). 
Let X represents a set of values with size n, with mean m and with standard 
deviation S. The comparison of the observed mean (m) of the 
population to a theoretical value μ is performed with the formula below: 

t = (m−μ)/ 𝑠/√𝑛 

To evaluate whether the difference is statistically significant, you first have 
to read in t test table the critical value of Student’s t 
distribution corresponding to the significance level alpha of your choice 
(5%). The degrees of freedom (df) used in this test are: 
df = n−1 

TWO SAMPLE T-TEST 

Independent (or unpaired two sample) t-test is used to compare the means of 
two unrelated groups of samples. 

• Let A and B represent the two groups to compare. 

• Let mAand mB represent the means of groups A and B, respectively. 
• Let nAand nB represent the sizes of group A and B, respectively. 

 
The t test statistic value to test whether the means are different can be 
calculated as follows:

 
Once t-test statistic value is determined, you have to read in t-test 
table the critical value of Student’s t distribution corresponding to 



 

 

the significance level alpha of your choice (5%). The degrees of 

freedom (df) used in this test are: 
df = nA + nB – 2 
 
 
PAIRED SAMPLE T-TEST 
To compare the means of the two paired sets of data, the differences 
between all pairs must be, first, calculated. 
Let d represents the differences between all pairs. The average of the 
difference d is compared to 0. If there is any significant difference between 
the two pairs of samples, then the mean of d is expected to be far from 0. 

The t-test statistic value can be calculated as follows: 

t = m/𝑠√n 

where m and s are the mean and the standard deviation of the difference 
(d), respectively. n is the size of d. 

Once t value is determined, you have to read in t-test table the critical 
value of Student’s t distribution corresponding to the significance level 
alpha of your choice (5%). The degrees of freedom (df) used in this test are: 
df = n – 1 

Example: Find the t-test value for the following two sets of values: 7, 2, 9, 8 
and 1, 2, 3, 4? 
Solution: 

X1 X1 – 𝑥̅̅1 (X1 -𝑥̅̅1 )2 

7 0.5 0.25 

2 -4.5 20.25 

9 2.5 6.25 

8 1.5 2.25 

  ∑( x1 -𝑥̅̅1 )2 = 29 

Mean for the first set of data = (7+2+9+8)/4 = 6.5 

Standard deviation for the first set of data = 3.11 



 

 

X2 X2 -𝑥̅̅2 (X2 -𝑥̅̅2 )2 

1 -1.5 2.25 

2 -0.5 0.25 

3 0.5 0.25 

4 1.5 2.25 

  ∑(x2 -𝑥̅̅2 )2 = 5 

 

Mean for the first set of data = (1+2+3+4)/4 = 2.5 

Standard deviation for the first set of data = 1.29 

For t-test value:     

t = 2.36 

 
CHI-SQUARED TEST FOR INDEPENDENCE 
A chi-square test for independence is applied when you have two categorical 
variables from a single population. It is used to determine whether there is 
a significant association between the two variables. 
Degrees of freedom. The degrees of freedom (df) is equal to: 
df = (r – 1) (c – 1) 

where r is the number of levels for one categorical variable, and c is the 
number of levels for the other categorical variable. 

The test statistic is a chi-square random variable (Χ2) defined by the following 
equation. 
X2 = ∑ (𝑓0 − 𝑓𝑐)2 /𝑓𝑐 
Where f0 are the observed values and fc are the expected values. 



 

 

As we already know, that if this number is larger than a critical value then 
we reject null hypothesis. 

The p-value is the probability of observing a sample statistic as extreme as 
the test statistic. Since the test statistic is a chi-square, use the chi-square 
distribution calculator to assess the probability associated with the test 
statistic. Use the degrees of freedom computed above. 

Example: A public opinion poll surveyed a simple random sample of 1000 
voters. Respondents were classified by gender (male or female) and by 
voting preference (Republican, Democrat, or Independent). Results are 
shown in the contingency table below. 
 

  Voting Preferences Row Total 

Rep Dem Ind 

Male 200 150 50 400 

Female 250 300 50 600 

Column Total 450 450 100 1000 

 

Is there a gender gap? Do the men’s voting preferences differ significantly 
from the women’s preferences? Use a 0.05 level of significance. 

Solution: 
The solution to this problem takes four steps: (1) state the hypotheses, (2) 
formulate an analysis plan, (3) analyse sample data, and (4) interpret 
results. We work through those steps below: 

• State the hypotheses. The first step is to state the null 
hypothesis and an alternative hypothesis. 
Ho: Gender and voting preferences are independent. 
Ha: Gender and voting preferences are not independent. 

• Formulate an analysis plan. For this analysis, the significance level 
is 0.05. Using sample data, we will conduct a chi-square test for 
independence. 



 

 

• Analyse sample data. Applying the chi-square test for independence 
to sample data, we compute the degrees of freedom, the expected 
frequency counts, and the chi-square test statistic. Based on the chi-
square statistic and the degrees of freedom, we determine the p-
value. 
 
DF = (r – 1) (c – 1) = (2 – 1) (3 – 1) = 2 
f1,1 = (400 450) / 1000 = 180000/1000 = 180 
f1,2 = (400 450) / 1000 = 180000/1000 = 180 
f1,3 = (400 100) / 1000 = 40000/1000 = 40 
f2,1 = (600 450) / 1000 = 270000/1000 = 270 
f2,2 = (600 450) / 1000 = 270000/1000 = 270 
f2,3 = (600 100) / 1000 = 60000/1000 = 60 
X2 = ∑ (𝑓0 − 𝑓𝑐)2 /𝑓𝑐 
Χ2 = (200 – 180)2/180 + (150 – 180)2/180 + (50 – 40)2/40 + (250 – 
270)2/270 + (300 – 270)2/270 + (50 – 60)2/60 
Χ2 = 400/180 + 900/180 + 100/40 + 400/270 + 900/270 + 100/60 
Χ2 = 2.22 + 5.00 + 2.50 + 1.48 + 3.33 + 1.67 = 16.2 
P(X2 > 16.2) = 0.0003 

 

Since the P-value (0.0003) is less than the significance level (0.05), we 
cannot accept the null hypothesis. Thus, we conclude that there is a 
relationship between gender and voting preference. 

CHI-SQUARED GOODNESS OF FIT-TEST 

A chi-square goodness of fit test is applied when you have one categorical 
variable from a single population. It is used to determine whether sample 
data are consistent with a hypothesized distribution. 
We follow the same steps followed for chi-square test for independence 
but here 

• Degrees of freedom. The degrees of freedom (DF) is equal to the 
number of levels (k) of the categorical variable minus 1. 
DF = k – 1 

• Expected frequency counts. The expected frequency counts at each 
level of the categorical variable are equal to the sample size times the 
hypothesized proportion from the null hypothesis 
Ei = npi 

where Ei is the expected frequency count for the ith level of the 



 

 

categorical variable, n is the total sample size, and pi is the 
hypothesized proportion of observations in level i. 

• Test statistic. The test statistic is a chi-square random variable (Χ2) 
defined by the following equation. 
Χ2 = Σ [ (Oi – Ei)2 / Ei ] 
where Oi is the observed frequency count for the ith level of the 
categorical variable, and Ei is the expected frequency count for the ith 
level of the categorical variable. 

 

Example: Acme Toy Company prints baseball cards. The company claims 
that 30% of the cards are rookies, 60% veterans but not All-Stars, and 10% 
are veteran All-Stars. Suppose a random sample of 100 cards has 50 
rookies, 45 veterans, and 5 All-Stars. Is this consistent with Acme’s claim? 
Use a 0.05 level of significance. 
 

Solution: The solution to this problem takes four steps: (1) state the 
hypotheses, (2) formulate an analysis plan, (3) analyse sample data, and 
(4) interpret results. We work through those steps below: 
 

• State the hypotheses. The first step is to state the null hypothesis 
and an alternative hypothesis. 

•  
o Null hypothesis: The proportion of rookies, veterans, and 

All-Stars is 30%, 60% and 10%, respectively. 

o Alternative hypothesis: At least one of the proportions in 
the null hypothesis is false. 

 

• Formulate an analysis plan. For this analysis, the significance level 
is 0.05. Using sample data, we will conduct a chi-square goodness of 
fit-test of the null hypothesis. 

• Analyse sample data. We compute the degrees of freedom, the 
expected frequency counts, and the chi-square test statistic. Based on 
the chi-square statistic and the degrees of freedom, we determine the 
p-value. 
DF = k – 1 = 3 – 1 = 2 (Ei) = n x pi 

(E1) = 100 0.30 = 30 
(E2) = 100 0.60 = 60 
(E3) = 100 0.10 = 10 
Χ2 = Σ [ (Oi – Ei)2 / Ei ] 
Χ2 = [ (50 – 30)2 / 30 ] + [ (45 – 60)2 / 60 ] + [ (5 – 10)2 / 10 ] 
Χ2 = (400 / 30) + (225 / 60) + (25 / 10) = 13.33 + 3.75 + 2.50 = 19.58 



 

 

The P-value is the probability that a chi-square statistic having 2 
degrees of freedom is more extreme than 19.58. 

 
We use the chi-square distribution calculator to find P(Χ2 > 19.58) = 0.0001. 
Since the P-value (0.0001) is less than the significance level (0.05), we 
cannot accept the null hypothesis. 

 
DECISION ERRORS 
Two types of errors can result from a hypothesis test. 

• Type I error. A Type I error occurs when the researcher rejects a 
null hypothesis when it is true. The probability of committing a Type 
I error is called the significance level. This probability is also 
called alpha, and is often denoted by α. 

• Type II error. A Type II error occurs when the researcher fails to 
reject a null hypothesis that is false. The probability of committing a 
Type II error is called Beta, and is often denoted by β. The 
probability of not committing a Type II error is called the Power of 
the test. 

The probability of not committing a type II error is called the power of a 
hypothesis test. 

To compute the power of the test, one offers an alternative view about the 
“true” value of the population parameter, assuming that the null 
hypothesis is false. The effect size is the difference between the true value 
and the value specified in the null hypothesis. 

Effect size = True value – Hypothesized value 
The power of a hypothesis test is affected by three factors. 

1. Sample size (n). Other things being equal, the greater the sample 
size, the greater the power of the test. 

2. Significance level (α). The lower the significance level, the lower the 
power of the test. If you reduce the significance level (e.g., from 0.05 
to 0.01), the region of acceptance gets bigger. As a result, you are less 
likely to reject the null hypothesis. This means you are less likely to 
reject the null hypothesis when it is false, so you are more likely to 
make a Type II error. In short, the power of the test is reduced when 
you reduce the significance level; and vice versa. 



 

 

3. The “true” value of the parameter being tested. The greater the 
difference between the “true” value of a parameter and the value 
specified in the null hypothesis, the greater the power of the test. 
That is, the greater the effect size, the greater the power of the test. 

 

Example: A machine fills milk bottles, the mean amount of milk in each 
bottle is supposed to be 32 Oz with a standard deviation of 0.06 Oz. 
Suppose the mean amount of milk is approximately normally distributed. 
To check if the machine is operating properly, 36 filled bottles will be 
chosen at random and the mean amount will be determined. 

1. If an α = 0.05 test is used to decide whether the machine is working 
properly, what should the rejection criterion be? 

2. Find the power of the test if the true mean takes on the following 
values: 31.97, 31.99, 32, 32.01, 32.03. Draw the power curve. 

3. Find the probability of a type II error when the true mean is 32.03. 

 
Solution: 

1. X ∼ N(µ, σ2 ), σ2 = 0.062 , so ∼ N(µ, σ2/36). 
H0: µ = 32, HA: µ 6= 32, 
α = 0.05 = P( ≥ 32 + a) + P( ≤ 32 − a) 
= 2P((𝑋̅  − 32)/(σ/6) ≥ 𝑎 /(σ/6) ) = 2P(z ≥ 6a/σ ) 
Therefore, 6a/σ = z = 1, 96, a = 0.0196. Hence the rejection regions 
are 32 ± a = 32.0196, 31.9804. 

2. Power1 = P(> 32.0196 | µ = 31.97) + P( < 31.9804 | µ = 31.97) = 
0.8508 
Power2 = P(z > 2.96) + P(z < −0.96) = 0.1700 
Power3 = P(z > 1.96) + P(z < −1.96) = 0.05 
Power4 = P(z > 0.96) + P(z < −2.96) = 0.1700 
Power5 = P(z > −1.04) + P(z < −4.96) = 0.8508 

3. β = 1 – Power5 = 0.1492 



 

 

 


