

Complex Number

U

WWW.TYCHR.COM

By the end of this chapter you should be familiar with:

- The properties of complex numbers
- Cartesian form of complex numbers
- Polar form of complex numbers
- Exponential form of complex numbers
- Powers and roots of complex numbers
- The use of complex numbers in STEM applications

Real numbers are simply the combination of rational and irrational numbers, in the number system. **Complex numbers** cannot be represented on the number line, but are analytic solutions to equations whose solutions are not real numbers. These complex numbers have an **imaginary unit**.

IMAGINARY NUMBERS

A number that is expressed in terms of the square root of a negative number is called an **imaginary number**. The imaginary unit is i and $i = \sqrt{(-1)}$

PROPERTIES:

•
$$i = \sqrt{(-1)}$$

- i³ = -i
- $i^4 = 1$, then $i^5 = i$ and so on for i^n

Every power n is an integer multiple of four that produces $i_n = 1$ and the pattern repeats.

Example: Express each in its simplest form

a)
$$i_{32} = i_4 = 1$$

b) $i_{126} = i_2 = -1$

Complex number has two parts, a **real part** and an **imaginary part** which can be thought of as two- dimensional numbers. This concept can be understood by placing them in the complex plane called the **argand plane**. A complex number has the form z = a + bi. |z| is the modulus of the complex number and the argument of z is defined as the angle between the positive real axis and the line from origin to z.

Example:Find the zeros of the equation $y = x^2 - 2x + 5$ and find the modulus and argument of the zeros.

Solution: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{2 \pm \sqrt{4 - 20}}{2} = \frac{2 \pm \sqrt{-16}}{2}$ $|x| = \sqrt{1^2 + 2^2} = \sqrt{5}$ $x = \frac{2 \pm 4i}{2} = 1 \pm 2i$ Arg(x) = tan⁻¹(2/1) = 63.435°

When a quadratic polynomial in x has zeros r_1 and r_2 then $(x - r_1)$ and $(x - r_2)$ are its factors. Then the quadratic equation is = $x^2 - (r_1 + r_2)x + r_1r_2$ Therefore, we can conclude that the negative sum of the zeroes is the coefficient of x and the product of the zeros is the constant term.

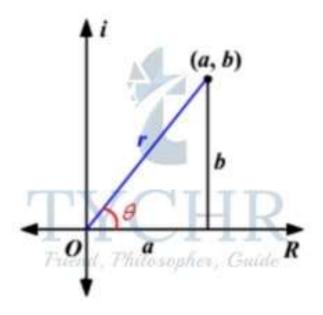
The complex conjugate of z = a + bi is $z^* = a - bi$ and the product of zz^* is $(a + bi)(a - bi) = a^2 + b^2$

Example: Rationalize in the form a + bi. Solution: $6/(1+i) = (6/(1+i)) \times ((1-i)/(1-i)) = 6(1-i)/2$ = 3(1-i) = 3 - 3i

POLAR FORM OF COMPLEX NUMBERS

The polar form of a complex number z = a + bi is $z = r(cos\theta + isin\theta)$ and can be abbreviated as z = r cis

where $\mathbf{r} = |\mathbf{z}| = \sqrt{(\mathbb{Z}^n + \mathbb{Z}^n)} (\text{modulus}) \mathbf{a} = \mathbf{r} \cos\theta$ and $\mathbf{b} = \mathbf{r} \sin\theta$ $\theta = \tan^{-1}(\mathbf{b}/\mathbf{a})$ (argument also referred to as $\arg(z)$) for a > 0 and $= \tan^{-1}(\mathbf{b}/\mathbf{a}) + \pi \text{or } \theta = \tan^{-1}(\mathbf{b}/\mathbf{a}) + 180^\circ$ for a < 0.



Example: Express 5 + 2i complex number in polar form.

Solution: The polar form of a complex number z = a + bi is $z=r(cos\theta + isin\theta)$.

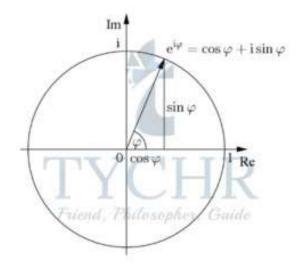
So, first find the absolute value of r. r=|z|= $\sqrt{(a^2 + b^2)} = \sqrt{(5^2 + 2^2)} = \sqrt{29} = 5.39$

Now find the argument θ . Since a > 0, use the formula θ =tan⁻¹(b/a). θ = tan⁻¹(2/5) = 0.38

Note that here θ is measured in radians. Therefore, the polar form of 5 + 2i is about 5.39(cos(0.38) + isin(0.38)).

EULER FORM OF COMPLEX NUMBERS

Euler's formula is the statement that $e^{i\theta} = \cos(\theta) + i\sin(\theta)$. When $x = \pi$, we get Euler's identity, $e^{i\pi} = -1$, or $e^{i\pi} + 1 = 0$. Basically, z = a + bi = 0



re^{iθ}

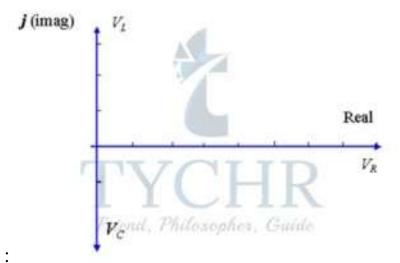
Example: Taking the last example where we found r = 5.39 and = 0.38.5 + 2i can also be expressed in Euler's form as $z = 5.39 e^{i0.38}$

POWERS OF COMPLEX NUMBERS DeMoivre's Theorem states that $z^n = (re^{i\theta})^n = r^n e^{i\theta}$ or $z^n = r^n cis(n\theta)$ Example: Compute $(3 + 3i)^5$ $r = |z| = \sqrt{(a^2 + b^2)} = \sqrt{(3^2 + 3^2)} = 3\sqrt{2} = tan^{-1}(3/3) = \pi/4$ $z^n = (re^{i\theta})^n$ $(3 + 3i)^5 = (3\sqrt{2})^5 e^{i5\pi/4} = 972\sqrt{2}(cos(5\pi/4) + i sin(5\pi/4)) = -972 - 972i$

APPLICATIONS OF COMPLEX NUMBERS REPRESENTING VOLTAGES IN COMPEX PLANE

Using the complex plane, we can represent voltages across resistors, capacitors and inductors.

The voltage across the resistor is regarded as a real quantity, while the voltage across an inductor is regarded as a positive imaginary quantity, and across a capacitor we have a negative imaginary quantity. Our axes are as follows



All AC waveforms have sinusoidal curves.

IMPEDANCE AND PHASE ANGLE

The **impedance** of a circuit is the **total effective resistance** to the flow of current by a combination of the elements of the circuit. To find this total voltage, we cannot just add the voltages V_R , V_L and V_C . Because V_L and V_C are considered to be imaginary quantities, we have:

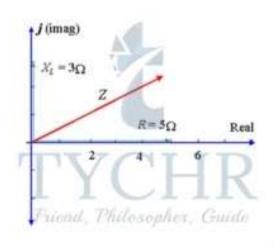
Impedance $V_{RLC} = |Z|$ $Z = R + j(X_L - X_C)$ $|Z| = \sqrt{2^n} + (2^n - 2^n)^n$ $\tan \theta = (2^n - 2^n)/2$

Example: A circuit has a resistance of 5Ω in series with a reactance across an inductor of 3Ω . Represent the impedance by a complex number, in polar form.

Solution: In this case, $X_L = 3\Omega$ and $X_C = 0$ so $X_L - X_C = 3 \Omega$. So in rectangular form, the impedance is written: Z=5+3j Ω Using calculator, the magnitude of Z is given by: 5.83, and the angle θ is given by: 30.96°.

So, the voltage leads the current by 30.96°, as shown in the diagram.

Presenting Z as a complex number (in polar form), we have: $Z=5.83 \ge 30.96 \circ \Omega$



Friend, Philosopher, Guide

